Exam 1

P201 Fall 2006,

Instructor: Prof. Abanov

09/19/06

Name		_ Section_	Section	
	(print)			

Your grade:

Problem 1.

An object is moving along a straight line with constant acceleration $a=-5\text{m/s}^2$. It's initial velocity is 16m/s.

What will be the velocity of the object in 3 seconds?

What will be the velocity of the object in 5 seconds? _____

What time will it take the object before it changes the direction of the motion? _____

What distance the object travels before it changes the direction of the motion? _____

Problem 2.

The figure shows the velocity vs. time for a car moving along a straight line.

What is the largest speed the car has

had? _____

What distance did it travel during the first two seconds of its motion? _____

What total distance did it travel? _____

What was the average speed of the car during all time it was moving? _____

Problem 3.

A ball has been thrown from the ground level with initial velocity v=10m/s at the initial angle

 Θ =30°. Point **B** is the top of the trajectory, point **C** is right before the ball hits the ground.

What is the ball's acceleration at points A, B, and C? A_____, B_____, C_____

What is horizontal component of the velocity at points B and C? B_____, C____

What is vertical component of the velocity at points B and C? B_____, C____

What time does it take for the ball to reach the points B and C? B_____, C____

What is the height of the trajectory at the point B? _____

What is the distance from the initial point to the point C? _____

What would the hight of the trajectory at the point B be if you doubled the initial velocity?_____

What would the distance from the initial point to the point C be if you doubled the initial velocity?_____

There are two cities A and B 1200km apart. The wind of 30km/h is blowing from the city B towards
the city A. An airplane can fly with the speed 120km/h with respect to the air. How long will it take for a plane to fly from the city A to the city B?
How long will it take for a plane to fly from the city B to the city A?
How long will it take for a plane to fly from City A to City B if the wind changes its direction by 90° ?
Problem 5.
A car goes around the circle of radius $R=8m$ with constant speed $v=10m/s$ What is the acceleration of the car?
What would be the acceleration if you double the radius?
What velocity should the car have to make the acceleration two times smaller?
Name the force that causes this acceleration of the car?

Problem 4.

Problem 6.

Two bricks with masses M=10 kg and m=8 kg are hanging on a frictionless pulley as shown on the figure.

What is the acceleration of the bricks m and M? M_____, m____

What is the tension T of the rope? _____

What additional vertical force one has to apply to the brick M to have zero acceleration?_____

Problem 7.

A brick of mass M=2kg on a slope of the angle $\theta=20^{\circ}$ initially has a velocity v=1 m/s

The friction coefficient between the brick and the slope is $\mu=0.4$

What is the friction force which acts on the brick? F=_____ (show the direction on the figure)

What is the acceleration of the brick? _____

How much time will it take the brick to stop?_____

What distance will the brick move until it stops?_____

Problem 8.	M
The coefficient of the friction between the plywood sheet and the brick M is μ =0.8 .	θ
At what angle θ can the brick slide without acceleration?	
_	question change if you put one more brick on top
of the brick M?	
Problem 9.	
A brick of mass 3kg is suspended on a	spring of the force constant $k = 150 \text{N/}m$.
How much does the spring stretch?_	
How much would it stretch if we we	re doing this experiment on the moon?
(acceleration of free fall on the moon i	s 1/6 th of that on the earth)

Problem 10.

Two bricks with masses M=10 kg and m=8 kg are hanging on a weightless frictionless pulley as shown on the figure.

The spring's force constant k = 120 N/m

What is the stretch of the spring?_____

(hint use tension T found in the Problem 6)

